
CONCURRENCY

CHAPTER 21-22.1 (6/E)

CHAPTER 17-18.1 (5/E)

LECTURE OUTLINE

 Errors in the absence of concurrency control

• Need to constrain how transactions interleave

 Serializability

 Two-phase locking

2

LOST UPDATE PROBLEM

 Problematic interleaving of transactions

• X should be X0 – 5 + 10 = 85

• Occurs when two transactions update the same data item, but both

read the same original value before update

… r1(X);…; r2(X); …; w1(X); …; w2(X)

… r2(X);…; r1(X); …; w1(X); …; w2(X)

3

DB Values T1 T2

X = 80

read_item(X); X = 80

X := X – 5; X = 75

read_item(X); X = 80

X := X + 10; X = 90

X = 75 write_item(X);

X = 90 write_item(X);

DIRTY READ PROBLEM

 Phantom update

• X should be as if T1 didn’t execute at all: X0 + 10 = 90

• Occurs when one transaction updates a database item, which is

read by another transaction but then the first transaction fails

… w1(X);…; r2(X); …; t1 rolled back

4

DB Values T1 T2

X = 80

read_item(X); X = 80

X := X – 5; X = 75

X = 75 write_item(X);

read_item(X); X = 75

X := X + 10; X = 85

X := X / 0; T1 aborts

X = 85 write_item(X);

INCONSISTENT READS PROBLEM

 Transactions should read consistent values for isolated state of DB

• SUM should be either 120 (80+15+25, before T1) or 130 (85+15+30,
after T1)

… r2(X); …; w1(X); …; w1(Y); …; r2(Y); … 5

DB Values T1 T2

X = <80, 15, 25>

read_item(X1); X1 = 80

SUM := X1; SUM = 80

read_item(X2); X2 = 15

SUM := SUM+X2; SUM = 95

read_item(X1); X1 = 80

X1 := X1 + 5; X1 = 85

X = <85, 15, 25> write_item(X1);

read_item(X3); X3 = 25

X3 := X3 + 5; X3 = 30

X = <85, 15, 30> write_item(X3);

read_item(X3); X3 = 30

SUM := SUM+X3; SUM = 125

UNREPEATABLE READ PROBLEM

 Even with only one update, might read inconsistent values

• Z has a value that depends on two different values of X!

• Occurs when one transaction updates a database item, which is

read by another transaction both before and after the update

…r2(X); … w1(X);…; r2(X); …

6

DB Values T1 T2

X = 80

read_item(X); X = 80

Y := f(X);

read_item(X); X = 80

X := X – 5; X = 75

X = 75 write_item(X);

read_item(X); X = 75

Z := f2(X,Y);

SERIAL SCHEDULES

 A schedule S is serial if no interleaving of operations from several

transactions

• For every transaction T, all the operations of T are executed

consecutively

 Assume consistency preservation (ACID property):

• Each transaction, if executed on its own (from start to finish), will

transform a consistent state of the database into another consistent

state.

• Hence, each transaction is correct on its own.

• Thus, any serial schedule will produce a correct result.

 Serial schedules are not feasible for performance reasons:

• Long transactions force other transactions to wait

• When a transaction is waiting for disk I/O or any other event,

system cannot switch to other transaction

• Solution: allow some interleaving

 8

ACCEPTABLE INTERLEAVINGS

 Need to allow interleaving without sacrificing correctness

 Executing some operations in another order causes a different outcome

• …r1(X); w2(X)… vs. …w2(X); r1(X)…

• T1 will read a different value for X

• …w1(Y); w2(Y)… vs. …w2(Y); w1(Y)...

• DB value for Y after both operations will be different

 Two operations conflict if:

1. They access the same data item X

2. They are from two different transactions

3. At least one is a write operation

• Read-Write conflict : … r1(X); …; w2(X); …

• Write-Write conflict : … w1(Y); …; w2(Y); …

 Note that two read operations do not conflict.

• …r1(Z); r2(Z)… vs. …r2(Z); r1(Z)...

• both transactions read the same values of Z

 Two schedules are conflict equivalent if the relative order of any two
conflicting operations is the same in both schedules.

9

SERIALIZABLE SCHEDULES

 Although any serial schedule will produce a correct result, they
might not all produce the same result.

• If two people try to reserve the last seat on a plane, only one gets
it. The serial order determines which one. The two orderings have
different results, but either one is correct.

• There are n! serial schedules for n transactions; any of them gives
a correct result.

 A schedule S with n transactions is serializable if it is conflict
equivalent to some serial schedule of the same n transactions.

 Serializable schedule “correct” because equivalent to some serial
schedule, and any serial schedule acceptable.

• It will leave the database in a consistent state.

• Interleaving such that

• transactions see data as if they were serially executed

• transactions leave DB state as if they were serially executed

• efficiency achievable through concurrent execution

1
0

TESTING CONFLICT SERIALIZABILITY

 Consider all read_item and write_item operations in a schedule

1. Construct serialization graph

• Node for each transaction T

• Directed edge from Ti to Tj if some operation in Ti appears before

a conflicting operation in Tj

2. The schedule is serializable if and only if the serialization graph

has no cycles.

 Is the following schedule serializable?

b1; ; b2; ; ; b3; ; e2; ; ; e3; ; e1;

Serializable; equivalent to: T2; T1; T3

b2; ; ; e2; b1; ; ; ; ; e1; b3; ; e3;

1
1

T1

T2

T3

TESTING CONFLICT SERIALIZABILITY

 Is the following schedule serializable?

1
2

T1 T2

DATABASE LOCKS

 Use locks to ensure that conflicting operations cannot occur

• exclusive lock for writing; shared lock for reading

• cannot read item with first getting shared or exclusive lock on it

• cannot write item with first getting write (exclusive) lock on it

 Request for lock might cause transaction to block (wait)

• No lock granted on X if some transaction holds write lock on X

• write lock is exclusive

• Write lock cannot be granted on X if some transaction holds any

lock on X

 Blocked transactions are unblocked and granted the requested lock

when conflicting transaction(s) release their lock(s)

• Like passing a microphone (but two types: one allows sharing) 1
4

T1 T2 holds read (shared) lock holds write (exclusive) lock

requests read lock OK block T1

requests write lock block T1 block T1

ENFORCING CONFLICT SERIALIZABILITY

 Rigorous two-phase locking (2PL):

• Obtain read lock on X if transaction
will read X

• Obtain write lock on X (or promote
read lock to write lock) if transaction
will write X

• Release all locks at end of
transaction

• whether commit or abort

• This is SQL’s protocol.

 Rigourous 2PL ensures conflict
serializability

 Potential problems:

• Deadlock: T1 waits for T2 waits for
… waits for Tn waits for T1

• Requires assassin

• Starvation: T waits for write lock and
other transactions repeatedly grab
read locks before all read locks
released

• Requires scheduler 1
5

T1 T2

request_read(A);

read_lock(A);

read_item(A);

A := A + 100;

request_write(A);

write_lock(A);

write_item(A);

request_read(A);

request_read(B);

read_lock(B);

read_item(B);

B := B -10;

request_write(B);

write_lock(B);

write_item(B);

commit; /*unlock(A,B)*/

read_lock(A);

read_item(A);

…

OTHER TYPES OF EQUIVALENCE

 Rigorous two-phase locking is quite constraining.

 Under special semantic constraints, schedules that are not
serializable may work correctly.

• Consider transactions using commutative operations

• Consider the following schedule S for the two transactions:

b1; r1(X); w1(X); b2; r2(Y); w2(Y); r1(Y); w1(Y); e1; r2(X); w2(X); e2;

• Not (conflict) serializable

• However, results are correct if it came from following update sequence:

• r1(X); X := X – 10; w1(X);

• r2(Y); Y := Y – 20; w2(Y);

• r1(Y); Y := Y + 30; w1(Y);

• r2(X); X := X + 40; w2(X);

• Known as debit-credit transactions

• Sequence explanation: debit, debit, credit, credit

 Specialized transaction processing may be conducted under more
liberal constraints to allow more interleavings.

 1
6

LECTURE SUMMARY

 Characterizing schedules based on serializability

• Serial and non-serial schedules

• Conflict equivalence of schedules

• Serialization graph

 Rigorous two-phase locking

• Guarantees conflict serializability

• Deadlock and starvation

 Weaker forms of “correctness”

1
7

SAMPLE QUESTION

 Determine whether or not each of the following four transaction

schedules is conflict serializable. If a schedule is serializable,

specify a serial order of transaction execution to which it is

equivalent.

H1 = r1[x]; r2[y]; w2[x]; r1[z]; r3[z]; w3[z]; w1[z];

H2 = w1[x]; w1[y]; r2[u]; w2[x]; r2[y]; w2[y]; w1[z];

H3 = w1[x]; w1[y]; r2[u]; w1[z]; w2[x]; r2[y]; w1[u];

H4 = w1[x]; w2[u]; w2[y]; w1[y]; w3[x]; w3[u]; w1[z];

1
8

